(风云榜)实时新闻-最新新闻-热搜榜-新闻头条全网更新最迅速的新闻资讯平台!

风云热搜榜
感知天下事

【英特尔安全漏洞】英伟达GPU存在安全漏洞,继英特尔之后再被打脸

英特尔安全漏洞
科技云报道原创。

如果你以为除了电脑和手机之外就安全的话,那你就还是低估硬件漏洞的危害了。此前,在英特尔CPU曝光出安全漏洞之后,很多人就将目光看向了英伟达这家世界上最大的GPU厂商。

上周,加州大学河滨分校(University of California Riverside)在一份论文中公布了英伟达GPU存在的安全漏洞。

研究人员发现了三种可能被黑客利用GPU来攻破用户安全与隐私防线的方法。这些技术可用于监视浏览器活动、窃取密码,以及向基于云端的应用程序发起攻击。

入侵英伟达GPU的三种场景

基于间谍和受害者的位置,研究者定义了三种攻击场景。在所有三种场景中,都存在一个只有普通用户权限的恶意程序,其目标是侵入受害者的程序。

场景一,图形侵入图形受害者(Graphics spy Graphics):来自图形的攻击侵入图形工作负载。由于台式机或笔记本电脑默认安装图形库和驱动程序,这种攻击可以很容易利用图形API(例如 OpenGL)来测量服务器托管的图形应用(例如网页浏览器),它们的泄露可以用来推断敏感信息。

场景二,CUDA 间谍侵入被攻击 CUDA(CUDA spy CUDA):来自 CUDA 间谍应用的攻击者入侵通常在云端上进行,其中安装了 CUDA库和驱动器。

场景三,CUDA 间谍侵入被攻击图形(CUDA spy Graphics):在安装了 CUDA 的用户系统上,来自 CUDA 间谍的攻击侵入图形应用是可能的。

其中,图形侵入图形受害者(Graphics spy Graphics)场景涉及两种攻击。

第一种,具备间谍软件和机器学习程序的条件,才可以利用现有的图形API(如OpenGL或 WebGL)发起攻击。换言之,一旦用户打开了恶意应用程序,它就会调用API来分析GPU正在呈现的内容,比如网页信息。GPU的存储器和性能计数器被其所监视,并馈送给机器学习算法,以解释数据和创建网站的指纹。

该研究指出,鉴于渲染对象数量和尺寸的不同,每个网站在GPU内存利用率方面都会留下独特的痕迹。在多次加载同一个网站时,这个信号的样式几乎时一致的,而且不受缓存的影响。

研究人员称,通过这种“网站指纹识别方法”,他们已经能够实现很高的识别准确率。借助这项技术,黑客可监控受害者的所有网络活动。

第二种更为糟糕,这一漏洞允许攻击者从GPU数据中提取密码。当用户键入密码字符时,整个文本框会被发送到GPU进行渲染。每一次的击键,都会发生这样的数据传递。如此一来,凭借完善的密码学习技术,只需监控GPU内存中持续的分配事件、并参考间隔时间,理论上攻击者就可以做到这点。

CUDA spy CUDA场景(攻击基于云端的应用程序)则比上述两种方法要复杂一些。攻击者可以在GPU上启动恶意的计算型工作负载,与被攻击者的应用程序一起运行。

该研究声称这是人们首次成功地对GPU发起旁路攻击,但是执行这类攻击也有着几项前提:首先,受害设备上必须被安装了间谍软件程序,这种恶意代码可以通过嵌入某个无害的应用程序进入设备。其次,攻击者必须拥有可以分析GPU内存分配机制的机器学习方法。

万幸的是,在团队向英伟达通报了他们的研究结果后,该公司表示将向系统管理员推出一个补丁,以便外界被禁止从用户级进程访问性能计数器。同时,研究团队还向AMD和英特尔安全团队通报了同样的事情,以便它们评估这些漏洞是否会在自家产品上被利用。

提示:如果您觉得本文不错,请点击分享给您的好友!谢谢

相关推荐

评论